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Abstract

This paper presents a method for detecting series arcing faults in AC home electrical networks. The proposed al-
gorithm is based on both a Kalman filter, used for identifying fault symptoms and a decision block, which confirms
the presence of a series arc fault to activate a tripping signal. The current measured at one end of the power line is
estimated using a model of two steady-state variables (X1 and X2). Firstly, residuals and the third order difference
of state X2 are used as input parameters of a Fuzzy logic processor for detecting fault symptoms. Secondly, the fault
symptoms are processed by a detection logic block, which confirm the presence of an electrical arcing fault.

The algorithm is tested on a variety of loads in single or masking load configurations. Experimental results show
that the method we propose can detect arcing faults efficiently, avoiding false tripping, whilst taking into account a
high degree of diagnosis accuracy and average detection time.
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1. Introduction

Arcing fault detection in domestic networks has been an important subject for industrials and researchers for many
years. In the USA, the safety standard UL 1699 dating from 1999, includes the requirements for arc fault interrupters
(AFCIs) whilst in Europe, standard IEC 62606 is much more recent and has been at the forefront of the development
of protective electric arc equipment for home use (50 Hz operating frequency and 230 V supply voltage). Protection
devices are mainly based on the power line current and are inserted at the level of the general supply source in dwelling
units. The challenge for fault detection algorithms is to work effectively with different circuit configurations where
series arcing faults are difficult to identify. In this work, we focus on arc fault situations in presence of masking loads,
whilst also taking into consideration the transient effect of starting loads.

The first difficulty in the development of AFCI lies in the choice of one or more optimal criteria. Different arcing
fault detection approaches have been proposed in the literature, with spectrum analysis being the detection method
most often used. Spectral analyze of the line current focusing on third and fifth harmonics [1–5] is performed in
a variety of bands ranging from low frequencies up to 20 kHz. The approach presented in [6] analyzes the power
spectral density of electromagnetic radiations.

Methods based on the temporal evolution of the current signal use the crest factor [7], inter-period correlations of
current [8] or algebraic derivative of the line current [9].

Time-frequency methods are able to analyze non-stationary transient signals produced by arcing faults using
essentially the Wavelet packet transform [10–12] and recently the Hilbert-Huang transform [13].

In this study, the detection method based on the Kalman Filter has the major advantage of allowing regular tem-
poral estimation through an on-line digital processing structure unlike The other methods proposed in the literature
which perform detection over a predefined sliding time window [1–14].

The Kalman filter and the extended kalman filter (EKF) are widely used in fault diagnosis [15–17]. The Kalman
filter estimates instantaneous states from noisy (measurement) data recursively.

The use of Kalman filters for protection relays on high power systems developed in the 1980s by [18], provides
state space models for voltages and currents. The work outlined in [19] associates an EKF and a support vector
machine (SVM) to detect a parallel arcing fault. [20] presents a method based on two Kalman filters with different
dynamics which detect incipient faults. This method is able to discriminate arcing faults from switching actions and
load changes in an underground cable.

In [21], the Kalman filter is used to calculate eigenvalues which are compared to a predefined reference value
(threshold) in order to identify the presence of an arc fault. However, this method was tested in stationary operating
mode using mainly resistive household appliances as loads, with no inclusion of motor loads.
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An important part of the detection algorithm lies in the decision block which must operate reliably to confirm
the presence of an arcing fault, respecting detection times imposed by standards UL 1699 and IEC 62606. Statistical
techniques used for the selection of static thresholds presented in [22] are not sufficient to develop robust algorithms
capable of avoiding false activation on circuit breakers. Another solution is to use a neural network or an SVM
[23, 24]. However, they require long learning stages and are difficult to implement in a conventional electronic
circuit board. In order to reconcile simplicity and efficiency, the strategy adopted in this work relies on an adaptive
thresholding logic. The main part of the decision making is constituted by a Fuzzy logic processor largely used in
recent years in fault diagnosis in photovoltaic and robotic systems [25–28] .

The major contribution of this article is the development of an arcing fault algorithm which is designed to reliably
detect arcing fault events in stationary and transient operating modes in household appliances. Further, the algorithm
incorporates more efficient fault detection and the prevention of nuisance tripping since it is is capable of distinguish
arcing faults from load variations in the presence of masking configurations.

2. Proposed method

The block diagram of the whole system, represented in Fig. 1, consists mainly of a Kalman filter block and a
decision part based on Fuzzy logic.

Figure 1: Scheme proposed for AC series arcing fault detection.

The kalman filter input is the current measured at one end of the power line (close to the source). The current
signal is estimated by using the calculation of two-state variables X1 and X2 obtained from state equations. Residuals
(Res) obtained from the subtraction between the measured current and its estimation and also the third order difference
of state X2 are used by the decision block. This block consists of a Fuzzy logic processor responsible for generating
fault symptoms which are processed by a detection logic block to confirm the presence of an arcing fault. Finally this
block sends a tripping signal (TS) to activate a controlled switch in order to disconnect the power source from the
power line.

The Kalman filter estimates a signal in the discrete domain and filters noises. The current signal in normal circuit
operation can be represented by two phasors: the first with initial phase of 0 degree and the second with a 90 degree
shift.

i(n) = X1 ∗ coswot − X2 ∗ sinwot (1)

Where X1 and X2 are independent, zero mean, Gaussian random variables and represent the real and imaginary
parts. The system equations are then defined using a two-state model shown in [18].

[
X1(n + 1)
X2(n + 1)

]
=

[
1 0
0 1

] [
X1(n)
X2(n)

]
(2)

[
i(n)
]

=
[
coswon∆t − sinwon∆t

] [X1(n)
X2(n)

]
+
[
V(n)
]

(3)

Equations (4) and (5) represent the state and measurement equations respectively.

3. Experimental environment

An experimental platform represented in Fig. 2 is used to create a database of current signatures under normal
operation (switch is closed) and then in the presence of series arc faults (switch open). The database is used to evaluate
the performance of the proposed method of detection. The experimental setup, consists of various domestic loads
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Table 1: Loads used in the experimental platform.

Configuration Appliance Power
[W]

Simple

Kettle 1200
Halogen lamp 500
Fan 60
PC 300
Drill 400
Vacuum cleaner 1 1000
Vacuum cleaner 2 1600

Parallel appliances Halogen lamp // Halogen lamp 1000
PC // PC 600

Masking type 1
Halogen lamp // R=80ohm
Vacuum cleaner 2 // R=80Ω

Drill // R=80Ω

Masking type 2 Vacuum cleaner 2 // R=80Ω

Drill // R=80Ω

Masking type 3 Vacuum cleaner 2 // R=80Ω

Drill // R=80Ω

EMI filter 1
R=47Ω

Drill
Vacuum cleaner 2

Disturbing appliance

Vacuum cleaner 1
PC
Drill
fluorescent lamp
Compressor

supplied by the European domestic alternating voltage 230 Volts, 50Hz. The process of generating a series arcing
fault is done using the opening contacts mode between two copper electrodes (6 millimeters diameters) according to
IEC 62606 standard.

Figure 2: Experimental platform for series arc fault generation.

Measurements are recorded using an oscilloscope (Lecroy HDO 6104) at a sampling rate of 1MHz. Current
measurements are made using a Lecroy AP015 current probe (75MHz bandwidth).

3.1. Series arc fault tests using typical domestic loads

Table I shows the characteristics of the main linear and non-linear household loads connected in the circuit.
A database of current signatures is obtained using simple and combined loads configuration. The combination of
different loads can be made according to several configurations presented in the standards UL 1699 and IEC 62606.

As fault detection is more difficult to achieve with combined loads (table I), household appliances are associated
in parallel. Other tests are performed according to masking configurations presented in Fig. 3. In masking-type
configurations a resistor of 80Ω generates a masking effect in the circuit.

Figure 3: Different masking-type configurations.

The frequency rate of 100 kHz was selected in order to avoid an unnecessary computational burden for the algo-
rithm implementation in an electronic circuit board (FPGA, DSP, etc).

A strategy for arcing fault detection based only on Res does not allow for effective detection. Thus, Res and
the third order difference of X2 (di f f 3(X2)) parameters can be combined to detect arcing faults. It can be seen
that the association of these two parameters will allow arcing faults to be detected in the presence of motor loads
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under complex operating conditions (different masking load configurations, transient effects, variable speed and motor
torque variations).

4. The decision part

The decision part plays a key role in the ability of the algorithm to avoid false tripping alarms.

4.1. Adaptive threshold using a Fuzzy logic processor

Based on the Fuzzy approach for threshold adaptation, we present our own topology displayed in Fig. 4. In our
system Res and |di f f 3(X2)| are used as inputs of a Fuzzy logic processor (Mamdani FIS engine). These parameters
deviate from zero even when no fault is present. The deviations in stationary operating mode are due mainly to
measurement noises and unknown perturbation inputs. Furthermore, in transient operating mode these deviations vary
dynamically and depend on appliance type and circuit configuration. The evaluation of these parameters therefore
require a decision making process in order to reduce sensitivity to false alarms. In the adaptive thresholding logic
shown in Fig. 4, the Fuzzy logic processor uses Fuzzy rules to sets an optimal threshold ∆J(Res, |di f f 3(X2)|) which
is then compared to |di f f 3(X2)| coefficients in order to generate fault symptoms.

Figure 4: Fuzzy thresholding logic.

∆J increases or decreases under different fault scenarios (it includes varying operating conditions and uncertain-
ties). The larger the difference between |di f f 3(X2)| coefficients and ∆J the greater the possibility that a fault has
occurred.

The mapping of crisp values into a representation by fuzzy sets is required. Thus, the fuzzyfication of Res,
|di f f 3(X2)| and ∆J are done through linguistic values.

4.2. Detection logic

The detection logic block shown in Fig. 5 guarantees correct fault detection. This block confirms the presence of
an arcing fault and also reduces false tripping.

Figure 5: Detection logic.

In the process of confirming an arcing fault, the detection logic block starts by transforming the fault symptoms
generated by the thresholding logic into binary pulses obtained with a comparator block. Then, a timing window of δ
ms is then activated by the rising edge of the first binary pulse. An arcing fault is detected when N binary pulses are
counted in a timing window. δ = 60 ms and N = 7 are set experimentally in order to get a fast response in the circuit
breaker.

5. Results

The blocks diagram shown in Fig. 1 was implemented using MATLAB. Different experimental tests were con-
ducted in order to evaluate and validate the diagnostic accuracy of the detection algorithm.

In Fig. 6 the transient operating mode of the current using the first masking-type configuration (Fig. 3) for a
halogen lamp, vacuum cleaner 2 and a drill is shown. The halogen lamp is started with a maximum power variation
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(section B) giving rise to a transient state which affects the Kalman filter dynamic. Consequently, residuals and
|di f f 3(X2)| coefficients with high amplitudes are generated. However, the Fuzzy logic thresholding prevents fault
symptoms being generated and, as a result, false tripping by the detection logic block is not produced. Finally, the
arcing fault is confirmed and the tripping signal is sent after three wave cycles (60 ms).

In the case of current waves generated by vacuum cleaner 2, |di f f 3(X2)| coefficients are only affected by the
presence of an arcing fault produced in section E, presenting high amplitudes. The detection logic block sends a
tripping signal after 20ms.

The transient current behavior produced by a drill is presented in the whole of section F. The detection logic block
sends a tripping signal after a wave cycle (20 ms).

Fault symptoms in transient conditions under the first masking type configuration are effectively obtained in spite
of the parallel (R = 80Ω) resistor which masks arcing faults.

Figure 6: Sub-case 2: transient current (masking-type 1) of an halogen lamp, vacuum cleaner 2 and a drill.

Table IV summarizes the performances obtained by all the tests carried out in the laboratory.

Table 2: Summary of results.

Operation
Mode

Load Configuration No. of
Tests

Diagnosis
Accuracy
(%)

Average
Detection
Time (ms)

Stationary Simple 20 100 60
Parallel 4 100 40

Transient

Simple 8 100 20
Parallel 7 100 30
Masking 18 100 60
EMI filter 4 100 40

Disturbing Drill 3 100 20
Load V. cleaner1 2 100 30

PC 2 100 30
F. lamp 2 100 35
Compressor 4 75 40

6. Conclusion and future work

AC series arcing fault detection using conventional algorithms are much more difficult to achieve in presence of
non-linear household appliances during the transient phase rather than in a steady-state. Furthermore, the performance
of these algorithms often can be affected by load variations, different masking load configurations and disturbing
appliances which are generally presented in real working conditions. In order to overcome these constrains, we have
proposed an algorithm based on a Kalman filter and Fuzzy logic. The generation of Res and |di f f 3(X2)| coefficients
obtained essentially from a Kalman filter with a fast dynamic response provide us with a first arcing fault detection
approach. A second step allows us to select different fault symptoms and to confirm the arcing fault through the use of
a decision part. The core of the decision part is composed by a Fuzzy logic processor which generates a threshold with
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different amplitude levels. This adaptive threshold mechanism makes an important contribution to the present research
since it allows a significant reduction in false fault symptoms, which could lead to false tripping by the detection logic
block. Finally, this block confirms an arcing fault after counting seven fault pulses in a timing window of δ = 60 ms
experimentally determined. The results obtained in both stationary and transient operation mode satisfy the triggering
time imposed by standards UL 1699 and IEC 62606 with a 230 V supply voltage. Future work aims to test loads
under the influence of EMI perturbations according to EN 61000-4-4, EN 61000-4-5 and EN 61000-4-11 standards.
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